Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability.

نویسندگان

  • A E Kilburn
  • M J Shea
  • R G Sargent
  • J H Wilson
چکیده

Telomere repeat sequences cap the ends of eucaryotic chromosomes and help stabilize them. At interstitial sites, however, they may destabilize chromosomes, as suggested by cytogenetic studies in mammalian cells that correlate interstitial telomere sequence with sites of spontaneous and radiation-induced chromosome rearrangements. In no instance is the length, purity, or orientation of the telomere repeats at these potentially destabilizing interstitial sites known. To determine the effects of a defined interstitial telomere sequence on chromosome instability, as well as other aspects of DNA metabolism, we deposited 800 bp of the functional vertebrate telomere repeat, TTAGGG, in two orientations in the second intron of the adenosine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. In one orientation, the deposited telomere sequence did not interfere with expression of the APRT gene, whereas in the other it reduced mRNA levels slightly. The telomere sequence did not induce chromosome truncation and the seeding of a new telomere at a frequency above the limits of detection. Similarly, the telomere sequence did not alter the rate or distribution of homologous recombination events. The interstitial telomere repeat sequence in both orientations, however, dramatically increased gene rearrangements some 30-fold. Analysis of individual rearrangements confirmed the involvement of the telomere sequence. These studies define the telomere repeat sequence as a destabilizing element in the interior of chromosomes in mammalian cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions

The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanis...

متن کامل

Telomeres, chromosome instability and cancer

Telomeres are composed of repetitive G-rich sequence and an abundance of associated proteins that together form a dynamic cap that protects chromosome ends and allows them to be distinguished from deleterious DSBs. Telomere-associated proteins also function to regulate telomerase, the ribonucleoprtotein responsible for addition of the species-specific terminal repeat sequence. Loss of telomere ...

متن کامل

Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells.

The physical termini of mammalian chromosomes are capped with tandem repeats of the telomere sequence (TTAGGG)n. After fluorescence in situ hybridization with a labeled (TTAGGG)n probe, telomere-repeat-like sequences are seen as discrete bands at distinct intrachromosomal sites in a variety of vertebrate species. There is increasing evidence that these sites may be hot-spots for chromosomal rea...

متن کامل

Telomere Instability Induced by Anticancer Drugs in Mammalian Cells

Telomere instability results from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. At the chromosomal level, this phenomenon is visualized by using Fluorescenc...

متن کامل

A beginning of the end: new insights into the functional organization of telomeres

Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2001